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Status

● More and more Flatpaks

● Flathub is doing great

● Distributions are starting to pre-install Flatpak Apps

● More and more Portals

● Everything is great
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Status

● More and more Flatpaks

● Flathub is doing great

● Distributions are starting to pre-install Flatpak Apps

● More and more Portals

● Everything is great...?
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Status

● Flatpak itself is stagnant!

● Maintenance and security work is happening

● Feature PRs just sit there for month and years

● Maintainers have left the project

● Newcomers don't get the opportunity to get familiar with the code base, 
get feedback, etc.

● Vicious cycle which leads to stagnation
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Status

Maybe this is fine...?
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Status

Flatpak is stable!
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Status

How to improve the ecosystem,
without changing Flatpak itself too much
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Flatpak Improvements:
Pre-installing

● Distros want to install Flatpak Apps as part of the Base OS

● Distro/admin configures the Apps, flatpak-preinstall takes care of the 
rest

● The feature is implemented (Kalev Lember, Owen Taylor, me) and will be 
in RHEL10

● Sitting in a pull request...
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Flatpak Improvements:
OCI image/transport

● Remotes are a single ostree repo

● Repos of the size of Flathub become problematic

● ostree is uncommon, has bespoke, non-standard tooling

● Building Flatpaks also requires non-standard tooling
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Flatpak Improvements:
OCI image/transport

● Flatpak supports pulling OCI images from container registries

● Images get imported locally into the ostree repo

● Gives us standard OCI registry tooling

● Gives us standard OCI build tooling

● zstd:chunked OCI transport means we retain file-level de-duplication 
(same as ostree)

● There are a few PRs which should improve things around OCI support
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Flatpak Improvements:
Backwards Compatible Permissions

● Continued push towards more restricted permissions and portals

● For example --device=input replaces --device=all, the USB 
portal replaces --device=all

● Flatpak apps can't drop --device=all because some systems are 
stuck on an old Flatpak or Portal versions

● Need a backwards compatible way to describe things!
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Flatpak Improvements:
Backwards Compatible Permissions

● --device=input --device=all --nodevice-if=all:has-
input-device

● --device=all --nodevice-if=all:has-usb-portal

● This also replace the ad-hoc wayland/X11 fallback mechanism:

--socket=wayland --socket=x11

--nosocket-if=x11:has-wayland

● This feature exists in a pull request
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Flatpak Improvements:
cgroup

● Currently for every running instance, a directory in 
$XDG_RUNTIME_DIR/.flatpak is created with metadat 

● Inside the mount namespace, /.flatpak-info is created, so that 
/proc/$PID/root/.flatpak-info can be used to authenticate a 
process as a Flatpak  instance

● Flatpak tells systemd to move instances to an appropriate cgroup

... but this is allowed to fail.

● We can require a cgroup per instance (either via systemd or directly) and 
store more metadata in the xattrs of the cgroup



14

The Future of Flatpak

Flatpak Improvements:
PipeWire

● Sound is still routed through PulseAudio, even when the host uses 
PipeWire

● With PulseAudio, speakers and microphones are bundled together: you 
get either both or none

● Pipewire can expose a restricted set of nodes
● Flatpak could tell PipeWire to restrict nodes on connections from the 

cgroup of the Flatpak instance to speakers only
● Mount the host PipeWire socket, just like we do for Wayland
● Portals could be used to dynamically add/remove nodes
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Flatpak Improvements:
Nested sandboxes

● Flatpak currently doesn't allow nested user namespaces (turned off via 
seccomp)

● Instead, a session helper service can be called to create a "side-sandbox"
● This mostly works, but it is fragile and there are issues which will likely 

not get solved
● Nested user namespaces are turned off, because

– It increases the attack surface against the kernel
– Portals need to authenticate Flatpak instances via 

/proc/$PID/root/.flatpak-info, but mount namespaces can 
override this
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Flatpak Improvements:
Nested sandboxes

● User namespaces have matured, making the increased attack surface 
argument less strong

● Making it easy for apps to drop privileges increases the overall security

● User namespaces allow us to drop a bunch of complexity

● Using cgroups, we can drop the requirement that 
/proc/$PID/root/.flatpak-info has to describe the instance

● With that in place, we might be able to enable nested sandboxes!
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Flatpak Improvements:
xdg-dbus-proxy

● Flatpak spawns a xdg-dbus-proxy for every Flatpak instance

● Apps can only talk with the proxy, not the session bus directly

● xdg-dbus-proxy is responsible for filtering according to rules that 
Flatpak sets up on flatpak-run

● The rules start from a deny-all state, and allow-list specific names

– This is done because services might expose things other apps are 
not supposed to use
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Flatpak Improvements:
xdg-dbus-proxy

● We should move the filtering from xdg-dbus-proxy to dbus brokers 
directly

● Policy based on a cgroup path

● Going to work on a prototype in busd
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Flatpak Improvements:
xdg-dbus-proxy

● Should allow for a more dynamic policy where apps can export services 
to other apps

– Aside: Apps can already communicate with other apps

The network namespace is shared and there are tons of side-
channels if one tries hard enough

● A portal invocation by the app goes app → proxy → broker → portal → 
broker → backend → broker → portal → broker → proxy → app

● We could get rid of two processes in the chain by removing the proxy
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Flatpak Improvements:
Network namespace

● Currently flatpak runs the app in the host network namespace

● Abstract unix sockets, TCP and UDP services, all leak into the sandboxes

● For example, the AusweisApp (German ID card authentication App) 
exposes a service on localhost, which is available to all apps

● The problem isn’t that communication between Apps is inherently bad, 
but that Apps accidentally expose more than they should to other Apps

● We should fix this, and create network namespaces!

● Please reach out to us if you have experience!
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Flatpak Improvements:
Drivers

● GL/Vulkan drivers get built against the Flatpak runtime

● Multiple drivers for multiple runtime versions

● Storage and network traffic overhead

● When a runtime is EOL, drivers are not updated

– Unmaintained apps will not support current GPUs

– Can mean the app won’t work anymore
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Flatpak Improvements:
Drivers

● Simple idea: use the host drivers

● Valve uses libcapsule to get the host driver into the runtime, but it's 
fragile

● Statically compile drivers and use them on the host, in containers and in 
Flatpak

● Mount latest glibc and static host drivers into runtimes



23

The Future of Flatpak

Portals

● A lot of “Flatpak problems” are not really Flatpak problems at all, but 
missing Portals

● Improving Portals directly improves the Flatpak story
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Portals
Documents

● The document portal has some problems and no one working on it

● Fine grained permissions via the document portal do not work for all 
Apps

● Some apps want to manage a whole “library”, potentially on removable 
media, multiple directories, …

– Blender, Steam, Music players, ...

● A library portal could dynamically bind-mounts user-selected host 
locations into the sandbox
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Portals
The Rest

● There are lots of ideas for Portals!

● AutoFill/password, FIDO, hidraw, restore, speech synthesis, AI, timers, ...

● Portals are kind of hard to write: written in C, threading, async, ...

● Currently exploring making it easier by using fibers (libdex) to replace 
threads and async/callback based C code

● Might even make sense to rewrite it in Rust
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Flatpak Next

If we wanted to
replace Flatpak with a Flatpak Next,

how would that look like?
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Flatpak Next

● Flatpaks are normal OCI images, built by generic OCI tooling
● Flatpaks get distributed via generic OCI registries
● std:zchunked and composefs to retain file-level de-duplication
● Clients have a local flatpak container storage
● Some files from images get exported (desktop file, service, etc.)
● flatpak-run creates the namespace directly (bwrap was only useful for 

systems without user namespaces)
● flatpak-run creates composefs mount from OCI images (app + runtime) 

and mounts an overlayfs on top for config
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Flatpak Next

 obviously🦀
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The Future of Flatpak

So, What Does the Future of Flatpak look like?
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The Future of Flatpak

So, What Does the Future of Flatpak look like?

Incremental improvements

Alignment with the wider container ecosystem
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