
The Future of Flatpak

The Future of Flatpak

Sebastian Wick (swick)
fosstodon.org/@swick

sebastian.wick@redhat.com

2

The Future of Flatpak

Status

● More and more Flatpaks

● Flathub is doing great

● Distributions are starting to pre-install Flatpak Apps

● More and more Portals

● Everything is great

3

The Future of Flatpak

Status

● More and more Flatpaks

● Flathub is doing great

● Distributions are starting to pre-install Flatpak Apps

● More and more Portals

● Everything is great...?

4

The Future of Flatpak

Status

● Flatpak itself is stagnant!

● Maintenance and security work is happening

● Feature PRs just sit there for month and years

● Maintainers have left the project

● Newcomers don't get the opportunity to get familiar with the code base,
get feedback, etc.

● Vicious cycle which leads to stagnation

5

The Future of Flatpak

Status

Maybe this is fine...?

6

The Future of Flatpak

Status

Flatpak is stable!

7

The Future of Flatpak

Status

How to improve the ecosystem,
without changing Flatpak itself too much

8

The Future of Flatpak

Flatpak Improvements:
Pre-installing

● Distros want to install Flatpak Apps as part of the Base OS

● Distro/admin configures the Apps, flatpak-preinstall takes care of the
rest

● The feature is implemented (Kalev Lember, Owen Taylor, me) and will be
in RHEL10

● Sitting in a pull request...

9

The Future of Flatpak

Flatpak Improvements:
OCI image/transport

● Remotes are a single ostree repo

● Repos of the size of Flathub become problematic

● ostree is uncommon, has bespoke, non-standard tooling

● Building Flatpaks also requires non-standard tooling

10

The Future of Flatpak

Flatpak Improvements:
OCI image/transport

● Flatpak supports pulling OCI images from container registries

● Images get imported locally into the ostree repo

● Gives us standard OCI registry tooling

● Gives us standard OCI build tooling

● zstd:chunked OCI transport means we retain file-level de-duplication
(same as ostree)

● There are a few PRs which should improve things around OCI support

11

The Future of Flatpak

Flatpak Improvements:
Backwards Compatible Permissions

● Continued push towards more restricted permissions and portals

● For example --device=input replaces --device=all, the USB
portal replaces --device=all

● Flatpak apps can't drop --device=all because some systems are
stuck on an old Flatpak or Portal versions

● Need a backwards compatible way to describe things!

12

The Future of Flatpak

Flatpak Improvements:
Backwards Compatible Permissions

● --device=input --device=all --nodevice-if=all:has-
input-device

● --device=all --nodevice-if=all:has-usb-portal

● This also replace the ad-hoc wayland/X11 fallback mechanism:

--socket=wayland --socket=x11

--nosocket-if=x11:has-wayland

● This feature exists in a pull request

13

The Future of Flatpak

Flatpak Improvements:
cgroup

● Currently for every running instance, a directory in
$XDG_RUNTIME_DIR/.flatpak is created with metadat

● Inside the mount namespace, /.flatpak-info is created, so that
/proc/$PID/root/.flatpak-info can be used to authenticate a
process as a Flatpak instance

● Flatpak tells systemd to move instances to an appropriate cgroup

... but this is allowed to fail.

● We can require a cgroup per instance (either via systemd or directly) and
store more metadata in the xattrs of the cgroup

14

The Future of Flatpak

Flatpak Improvements:
PipeWire

● Sound is still routed through PulseAudio, even when the host uses
PipeWire

● With PulseAudio, speakers and microphones are bundled together: you
get either both or none

● Pipewire can expose a restricted set of nodes
● Flatpak could tell PipeWire to restrict nodes on connections from the

cgroup of the Flatpak instance to speakers only
● Mount the host PipeWire socket, just like we do for Wayland
● Portals could be used to dynamically add/remove nodes

15

The Future of Flatpak

Flatpak Improvements:
Nested sandboxes

● Flatpak currently doesn't allow nested user namespaces (turned off via
seccomp)

● Instead, a session helper service can be called to create a "side-sandbox"
● This mostly works, but it is fragile and there are issues which will likely

not get solved
● Nested user namespaces are turned off, because

– It increases the attack surface against the kernel
– Portals need to authenticate Flatpak instances via

/proc/$PID/root/.flatpak-info, but mount namespaces can
override this

16

The Future of Flatpak

Flatpak Improvements:
Nested sandboxes

● User namespaces have matured, making the increased attack surface
argument less strong

● Making it easy for apps to drop privileges increases the overall security

● User namespaces allow us to drop a bunch of complexity

● Using cgroups, we can drop the requirement that
/proc/$PID/root/.flatpak-info has to describe the instance

● With that in place, we might be able to enable nested sandboxes!

17

The Future of Flatpak

Flatpak Improvements:
xdg-dbus-proxy

● Flatpak spawns a xdg-dbus-proxy for every Flatpak instance

● Apps can only talk with the proxy, not the session bus directly

● xdg-dbus-proxy is responsible for filtering according to rules that
Flatpak sets up on flatpak-run

● The rules start from a deny-all state, and allow-list specific names

– This is done because services might expose things other apps are
not supposed to use

18

The Future of Flatpak

Flatpak Improvements:
xdg-dbus-proxy

● We should move the filtering from xdg-dbus-proxy to dbus brokers
directly

● Policy based on a cgroup path

● Going to work on a prototype in busd

19

The Future of Flatpak

Flatpak Improvements:
xdg-dbus-proxy

● Should allow for a more dynamic policy where apps can export services
to other apps

– Aside: Apps can already communicate with other apps

The network namespace is shared and there are tons of side-
channels if one tries hard enough

● A portal invocation by the app goes app → proxy → broker → portal →
broker → backend → broker → portal → broker → proxy → app

● We could get rid of two processes in the chain by removing the proxy

20

The Future of Flatpak

Flatpak Improvements:
Network namespace

● Currently flatpak runs the app in the host network namespace

● Abstract unix sockets, TCP and UDP services, all leak into the sandboxes

● For example, the AusweisApp (German ID card authentication App)
exposes a service on localhost, which is available to all apps

● The problem isn’t that communication between Apps is inherently bad,
but that Apps accidentally expose more than they should to other Apps

● We should fix this, and create network namespaces!

● Please reach out to us if you have experience!

21

The Future of Flatpak

Flatpak Improvements:
Drivers

● GL/Vulkan drivers get built against the Flatpak runtime

● Multiple drivers for multiple runtime versions

● Storage and network traffic overhead

● When a runtime is EOL, drivers are not updated

– Unmaintained apps will not support current GPUs

– Can mean the app won’t work anymore

22

The Future of Flatpak

Flatpak Improvements:
Drivers

● Simple idea: use the host drivers

● Valve uses libcapsule to get the host driver into the runtime, but it's
fragile

● Statically compile drivers and use them on the host, in containers and in
Flatpak

● Mount latest glibc and static host drivers into runtimes

23

The Future of Flatpak

Portals

● A lot of “Flatpak problems” are not really Flatpak problems at all, but
missing Portals

● Improving Portals directly improves the Flatpak story

24

The Future of Flatpak

Portals
Documents

● The document portal has some problems and no one working on it

● Fine grained permissions via the document portal do not work for all
Apps

● Some apps want to manage a whole “library”, potentially on removable
media, multiple directories, …

– Blender, Steam, Music players, ...

● A library portal could dynamically bind-mounts user-selected host
locations into the sandbox

25

The Future of Flatpak

Portals
The Rest

● There are lots of ideas for Portals!

● AutoFill/password, FIDO, hidraw, restore, speech synthesis, AI, timers, ...

● Portals are kind of hard to write: written in C, threading, async, ...

● Currently exploring making it easier by using fibers (libdex) to replace
threads and async/callback based C code

● Might even make sense to rewrite it in Rust

26

The Future of Flatpak

Flatpak Next

If we wanted to
replace Flatpak with a Flatpak Next,

how would that look like?

27

The Future of Flatpak

Flatpak Next

● Flatpaks are normal OCI images, built by generic OCI tooling
● Flatpaks get distributed via generic OCI registries
● std:zchunked and composefs to retain file-level de-duplication
● Clients have a local flatpak container storage
● Some files from images get exported (desktop file, service, etc.)
● flatpak-run creates the namespace directly (bwrap was only useful for

systems without user namespaces)
● flatpak-run creates composefs mount from OCI images (app + runtime)

and mounts an overlayfs on top for config

28

The Future of Flatpak

Flatpak Next

 obviously🦀

29

The Future of Flatpak

The Future of Flatpak

So, What Does the Future of Flatpak look like?

30

The Future of Flatpak

The Future of Flatpak

So, What Does the Future of Flatpak look like?

Incremental improvements

Alignment with the wider container ecosystem

31

The Future of Flatpak

Sebastian Wick (swick)
fosstodon.org/@swick

sebastian.wick@redhat.com

	Slide 1
	test (1)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

