
Testing with Portals

Thinking with Portals
Testing

Sebastian Wick (swick)
fosstodon.org/@swick

sebastian.wick@redhat.com



2

Testing with Portals

What are Portals



3

Testing with Portals

What are Portals

● https://github.com/flatpak/xdg-desktop-portal

● https://flatpak.github.io/xdg-desktop-portal/docs/for-app-developers.html

https://github.com/flatpak/xdg-desktop-portal
https://flatpak.github.io/xdg-desktop-portal/docs/for-app-developers.html


4

Testing with Portals

What are Portals

● “XDG Desktop Portal is a session service that provides D-Bus interfaces 
for apps to interact with the desktop.”

● APIs are desktop agnostic

● APIs work for sandboxed and non-sandboxed applications

● Give users control over permissions



5

Testing with Portals

What are Portals

You Should Use Portals!



6

Testing with Portals

How Portals Work

● xdg-desktop-portal, xdg-permission-store, xdg-document-portal

● Exposing D-Bus interfaces and a fuse filesystem

● A subset of D-Bus interfaces are the actual API which is exposed to all 
apps

● xdg-desktop-portal authenticates the caller, validates input, checks and 
stores permissions, does agnostic work, calls into desktop-specific 
backends

● Desktop-specific backends show UI and do desktop-specific work



7

Testing with Portals

How Portals Work

desktop-
portal

document-
portal

permission
-store

org.example.App

fuse

GTK 
backend

GNOME 
backend

KDE 
backend

config

sandbox



8

Testing with Portals

How Portals Work

● Common conventions for the API:

– Requests: method call creates a Request object, which eventually 
delivers the result in a signal

– Sessions: method call creates a Session object; other method calls 
and Requests happen on the session



9

Testing with Portals

Testing: Where we Started

Great: There are existing tests!



10

Testing with Portals

Testing: Where we Started

● GLib Testing Framework

– Everything is written in C, so this makes some sense

● Two classes of tests

– Unit tests: a few functions are tested in isolation

– Integration tests

● Focusing on the integration tests (though it would be nice to expand on 
unit testing as well)



11

Testing with Portals

Testing: Where we Started

desktop-
portal

document-
portal

permission
-store

org.example.App

fuse

GTK 
backend

GNOME 
backend

KDE 
backend

config

sandbox



12

Testing with Portals

Testing: Where we Started

desktop-
portal

Integration test

Mocked 
backend

sandbox



13

Testing with Portals

Testing: Where we Started

● Test spawns xdg-desktop-portal and a mocked backend

● Communication between backend and test via keyfiles (also known as 
desktop files, ini file)

● Backends and tests written in C

● Tests use libportal to talk to xdg-desktop-portal

– New portals need tests, which needs support in libportal which 
needs the new portal (cycling dependency)

● CI was rotting away



14

Testing with Portals

Testing: Where we Started

● Peter Hutterer started using python for some new integration tests

● pytest framework

● dbus-mock for mocking the backend

● Utils for interacting with the portal dbus API directly

● Existing C tests didn’t get ported, new tests used C, limitations



15

Testing with Portals

Upgrading the CI

● You actually need to run the tests if they are of any use

● CI is perfect for this

● … but our CI is not in great shape

● Let’s improve it!



16

Testing with Portals

Upgrading the CI



17

Testing with Portals

Upgrading the CI

● GitHub workflows

● Creating an image on-demand, re-using existing one if it exists (similar 
to fdo and GNOME CI)

● Containerfile to create the image from

● Building, running linters, running tests, creating a release tarball

● Building docs and website

● Workflow for releases (Georges improved this to work via tags)



18

Testing with Portals

Python Integration Tests

● Isolate the tests from the system more

– Create tempdirs for XDG_HOME, XDG_DATA_DIR, …

● Make it possible to run xdg-document-portal, xdg-permission-store

● Run address sanitizers on the DUTs to catch memory leaks

● Allow mocking multiple backends and services

● Improve the overall structure of the tests via pytest fixtures

● Make the tests more flexible



19

Testing with Portals

Python Integration Tests

● Support for umockdev to mock devices (used by the USB portal)

● Allow tests to configure xdg-desktop-portal (used e.g. by the Settings 
portal)

● Allow tests to set as which app and app kind (flatpak, snap, host) they 
are detected

● Improved testing utils and replaced timeout-based tests with waiting for 
conditions (eliminates races)



20

Testing with Portals

Python Integration Tests

● Port over existing C integration tests to the new pytest harness

– Some integration tests do not test the portal directly but e.g. the 
document portal and permission store

– A test for the document-store fuse was written in python; ported to 
the new harness

– Some APIs use complex data structures which are hard to use with 
dbus-python

● Drop the C integration tests



21

Testing with Portals

Python Integration Tests



22

Testing with Portals

Python Integration Tests

-12,009



23

Testing with Portals

Python Integration Tests

desktop-
portal

document-
portal

permission
-store

Integration test
[flatpak, snap, host]

fuse

Mocked 
backend 1

Mocked 
backend 2

config

sandbox



24

Testing with Portals

Python Integration Tests



25

Testing with Portals

Python Integration Tests



26

Testing with Portals

Python Integration Tests



27

Testing with Portals

Python Integration Tests



28

Testing with Portals

Python Integration Tests



29

Testing with Portals

Python Integration Tests



30

Testing with Portals

Python Integration Tests



31

Testing with Portals

Sebastian Wick (swick)
fosstodon.org/@swick

sebastian.wick@redhat.com


	Slide 1
	test (1)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

