
Jordan Petridis - LAS 2025

Flathub
A paradigm shift for distributing applications

About Me

• GNOME developer for ~8 years

• Working part time at Centricular

• Not affiliated with Flathub

• Application and Platform/System developer

• Flatpak Runtimes, GNOME OS, CI things, Release Engineering

Hi, I am Jordan!

Why Am I Here?

• Second time at LAS!

• After complaining about the Conference name

• … ended up presenting at LAS 2019

• There is no “Linux” Platform

• Counter part blogpost:

• https://blogs.gnome.org/tbernard/2019/12/04/there-is-no-linux-platform-1/

Why Am I Here?

• Tempting..

It’s Sri’s fault again
Why Am I Here?

Jordan Petridis - LAS 2025

Flathub
A paradigm shift for distributing applications

Jordan Petridis - LAS 2025

Flathub
A paradigm shift for distributing applications

Jordan Petridis - LAS 2025

Flathub Won
Stop Packaging Apps

Once upon a time

Application/Soware Availability

• Common to stick with distributions based on what was packaged

• For the last couple of years this has been an issue

• Flathub has an application catalogue that my younger self could only dream of

• But how did we get here?

Was a huge deal

Traditional Distribution
Model 101

Traditional Social Contract

• Clear Separation between “Upstream” and “Downstream”

• Upstream developers publish their source code

• Downstream distributions take it, build it, “test” it, integrate it

• Users download the distribution package (deb/rpm/etc)

Traditional Social Contract

• Users only ever have to trust a single source. The distribution/ISV (Independent Software
Vendor)

• Sometimes they sell support contracts to enterprises

• The distribution is responsible for vetting the software:

• Testing the software

• Make sure its not malicious

• Comply with local laws, trademarks, copyright

• Fix security issues, when not accidentally introducing them

• Fix bugs (maybe)

Linux Distributions are not
made by the people that write

the soware

Social Dynamics

Social Dynamics

• Distributions get to decide when and how users will get the software

• Release schedules, LTS versions, different defaults, patches

• Distributions handle user support

• Access to users is often used as a power play against smaller projects

• “Our users will never see your application unless you comply with our policies”

Upstream projects are dependent on downstream distributions

Social Dynamics

• Each distribution has 3 different versions

• Every single package update needs to work with every other update

• Package managers result into a combinatorial explosion of possible environments

• Every single snapshot of the distribution is a different system

• There is no guarantee what packages and versions the end-user system will have

Testing is Impossible

Social Dynamics

• There are so so so many Linux distributions

• Each one is configured differently

• Often they have conflicting policies

• Some use glic, others musl

• Some have systemd, others don’t’

• Even the paths where they place the binaries are different

• You need a dedicated machine to build and test your software, for each one

• It’s a tremendous effort for upstreams to support multiple distributions

Testing is Impossible

Social Dynamics

• Say you want to test your application against GNOME 49 or a newer version of GTK

• You need to have a system with the *pre-release snapshots* of these software

• Which means getting it packages and included in a distribution

• This varies from distribution to distribution

• Fedora Rawhide and Debian Unstable are examples

• Often theses are not up to date enough, or working at all (unstable duh)

• GNOME receives little to no feedback for alpha, beta and even Release Candidates

Pre-Release Testing is even more impossible

Social Dynamics

• The initial review is usually quite in depth

• … but after that updates are automated and untested

• Nobody checks for new dependencies, or reads the release notes

• Let alone checking the actually source code diff with the previous version

• The trust we all put in on distributions is solely on vibes alone

• And besides you can’t be expected to actually audit all the source, especially when you
are not involved at all in the upstream development

• Even though the claim is that you only have to trust one source, you always trust the
upstream developers implicitly

Vetting isn’t as thorough as you’d expect

Social Dynamics

• Everything must be included in the central repository means:

• Licensing and redistribution clauses make it impossible to have proprietary software

• As well as FOSS applications including Secrets (such as API Tokens) into their builds

• Even though all the code being Free Software

• Example: OBS builds don’t include API keys needed to interface with the streaming
platforms and the users have to supply their own

• Maintaining Third-party packages and repositories is a Sisyphean task

• Regardless if its APT or Copr repositories, they always break in incredible ways

• The model was never designed for third-party addons/repositories

This model only does not work for third-party software

Developer Dilemmas

• How do you deal with a million ever changing and conflicting policies of each
distribution?

• How do you keep your software up to date for everyone and every possible
combination

• What do you do when if you cannot give your secrets/keys to everyone

Results

• Software is distributed basically untested

• And thus distributions are extremely conservative with updating software

• There’s no real “support” or “bugfixing” in practice

• Instead its upstream project doing this, for security fixes as well

• Users get extremely old software that’s not updated unless there is a “good enough”
reason (security)

• Upstreams receive bug reports for bugs fixed years ago, since LTS distributions still use
an outdated and known broken versions

• New features only make it to users only months, if not years, after they are released

Impact on Platform Development

• Platform developers suffer from this but don’t have any other options

• Platform components (GNOME, KDE, systemd, etc.) have grudgingly adapted to
this since we have been doing it this way for the past 20 years

• Others went all in into containers, for better or for worse

• Anyone who questions the existing model gets flamed endlessly

Why do we even bother honestly?

Impact on Application Development

• Developers have no “Linux” Platform/Target to develop against

• Linux is not a platform anyway..

https://blogs.gnome.org/tbernard/2019/12/04/there-is-no-linux-platform-1/

Impact on Application Development

• Developers have no “Linux” Platform/Target to develop against

• At best some developers will target a couple of the most popular distributions

• And from those, usually only LTS releases

• More commonly, most give up and go to do literary anything else

• “Linux” Application development was always a joke, never got commercial
support

• Attempts were made in the past, but none succeeded.

Impact on Application Development

• Waiting months for your software to make it to users

• In order to support many different distributions, they have to wait until features they
need are available in the oldest still-supported LTS version

• For example, Electron only depends on versions of libraries that can be found in
Ubuntu 22.04 (LTS -1)

• That’s already 3 years old sofware

• 3 years of development you can’t make use of

• APIs we releases last month with GNOME 48 last month, won’t be available until 26.04

• And more commonly, software will only start to depend on them around 28.04 (2028)

Traditional Social Contract

• Users only ever have to trust a single source. The distribution/ISV (Independent Software
Vendor)

• Sometimes they sell support contracts to enterprises

• The distribution is responsible for vetting the software:

• Testing the software

• Make sure its not malicious

• Comply with local laws, trademarks, copyright

• Fix security issues, when not accidentally introducing them

• Fix bugs (maybe)

Traditional Social Contract

• Users only ever have to trust a single source. The distribution/ISV (Independent Software
Vendor)

• Sometimes they sell support contracts to enterprises

• The distribution is responsible for vetting the software:

• Testing the software

• Make sure its not malicious (Remember the XZ backdoor?)

• Comply with local laws, trademarks, copyright

• Fix security issues, when not accidentally introducing them

• Fix bugs (maybe) (If you have deep pockets)

Birth of Flatpak

Flatpak

• Application distribution framework that aims to improve over the traditional
package manager solutions.

• Not the first but nor the last approach to the problem. But it’s the one that stuck.

• Unlike other container solutions (docker/etc) , it’s an explicit goal to “Integrate” with
the host system.

• Flatpak applications work regardless of the distribution they are run on

Flatpak’s Design

• Image Based

• Applications are the sum of all the parts of the software

• Everyone runs exactly the same version of the software

• Atomic operations/updates

• Well defined, deterministic and reproducible environments

• Runtimes!

• Tiny “distro” we distribute along with the application

• Applications can run on any distro, cause they always run against their own distro

• Host-Integration (Portals)

What kind of magic can make applications work anywhere?

Flatpak is not a silver bullet

Flatpak is not a silver bullet

• You can replicate today’s status quo but with all of Flatpak’s advantages

• You can build a Runtimes and applications using the same distribution packages

• Following the same inclusion policies and requirements

• Using the same tooling as the distro

• Maintained by the same group of people

• The Fedora Flatpak repository is such an example

Nobody wants Fedora’s Flatpaks

It would have been easy to stop there

• Here’s a new technology that fixes SOME of the major issues we had

• It allows for decoupling the Host System from applications

• And thus you can update applications independently

• While also providing Sandboxing

• Image based deployments and deterministic/defined environments

• Would be making everything better than it was the day before

Flatpak developers marched forward

Traditional Social Contract

• Clear Separation between “Upstream” and “Downstream”

• Upstream developers publish their source code

• Downstream distributions take it, build it, “test” it, integrate it

• Users download the distribution package (deb/rpm/etc)

What if instead

We put developers in charge of
application distribution?

Application Social Contract

• Application developers publish their source code (or not)

• Application developers build the software exactly the way they expect

• And can define exactly the dependencies they need

• Patch them at will, Configure them exactly as needed, and so on

• Application developers actually QA/test their application

• Application developers distribute the application to their users directly

The Birth of the First Runtimes

• This new social contract doesn’t have to apply only to application developers

• Besides, we’ve seen how well it went relying on others to configure your software

• The first Runtimes created were not “Ubuntu” or “Fedora” or “Arch”

• But rather they were GNOME’s and KDE’s and they were built from scratch

• Putting the Platform developers in charge of building and distributing their runtimes

Platform Development

• Application developers don’t make “Ubuntu”, “Fedora” or “Linux” apps

• Instead they all make “GNOME” and “KDE” apps

• Development does not happen on the distribution layer but on the desktop

• Runtimes gave us the missing SDK and Target to let people develop against

• They could also be developed shaped, updated and released on the same schedule
as the rest of the Platform was

We created Flathub

• Joint effort between GNOME and KDE

• Direct publishing to users as developers see fit

• Extensive automated and human reviews

• Strong focus on improving the software upstream

Flatpak as a technology makes it
possible for Flathub to come along

and address the underlying social issue

Flathub Won

Flathub Won

• The technical advantages of Flatpak along with direct publishing to Flathub
became very popular

• The “Verified Developer” program of Flathub is very successful

• More than half of the applications are verified

• Even though this has been a pain point and discussed for decades neither KDE or
GNOME had the resources to implement and maintain a whole OS

• Thanks to containerization technologies only need to maintain Runtime and Sdk
for the applications

Conclusion

Conclusion

• Nobody has the resources to package all the apps centrally

• Distros don’t do any kind of review past the initial one

• Distros don’t triage issues or offer any kind of support in practice

• Distros publish untested builds

• Yet they still act as if they are developing the software and should be in a position to
gatekeep the applications

Stop packaging apps

Stop packaging apps

• It might feel like admitting defeat, but by now it’s clear the distribution model is not
working

• We need to seriously rethink the role of distributions

• The status quo sort of works for server and enterprise use cases, which is where
most of the money is

• If we want software freedom to become accessible this needs to change

100 better ways to spend your time

• Don’t repackage apps needlessly

• Focus on a minimal host system, and actually differentiate

• Help with Application reviews on Flathub

• Improve apps and platforms upstream

Thanks

