
Writing native Linux desktop apps with JavaScript

Philip Chimento •   ptomato •  @therealptomato

Linux Application Summit, May 13, 2021

Image by Сергей Корчанов from Pixabay

https://pixabay.com/users/skorchanov-5650284/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5281165
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5281165

Introduction

I maintain GJS (GNOME JavaScript)

This talk is a bit of an experiment for me

Can web JS programmers ramp up quickly on writing a desktop app?

https://gitlab.gnome.org/GNOME/gjs/

What this talk is

For JavaScript developers and enthusiasts

who are curious about writing a desktop app

A walk through creating and publishing a desktop app in JS

Technologies: GJS, GTK, Flatpak, Flathub

A slide deck that you can read later

https://ptomato.name/talks/las2021/

https://ptomato.name/talks/las2021/

What this talk is not

A step-by-step tutorial on how to write an app

There's already a good one on gjs.guide

Presented by an experienced web developer

https://gjs.guide/guides/gtk/3/

Let's get started!

Image CC0 licensed

https://www.pexels.com/photo/short-fur-black-orange-and-gray-cat-208984/

App: "Bloatpad"

the unnecessary note-taking app

Have something to start

with

Can also use gtk-js-app

https://github.com/gcampax/gtk-js-app

a Meson build system

a placeholder icon

resource bundles

a .desktop file

a settings schema

an AppStream meta info file

infrastructure for i18n

skeleton code

a Flatpak manifest

Build systems

Meson is probably a good one to stick with

You will need it if your app ever includes any C code

Coming from JS development you still might want something more familiar

$ yarn init

"scripts": {
 "prebuild": "test -d _build || meson _build",
 "build": "ninja -C _build",
 "start": "meson compile -C _build devel",
 "test": "meson test -C _build"
}

Yarn

$ yarn build
$ yarn start

Linter

May as well install prettier and never again worry about code style

eslint for usage

$ yarn add --dev prettier eslint eslint-config-prettier

"lint": "eslint . --fix && prettier --write ."

https://prettier.io/
https://eslint.org/

TypeScript

You can write in TypeScript, it mostly works

Or write JS with type annotations in comments and use TypeScript to typecheck

Thanks to the hard work of Evan Welsh

https://gitlab.gnome.org/ewlsh/gi.ts

Other build tools

Bundlers are probably not needed

Tree shaking can be useful

use e.g. find-unused-exports

Minifiers are probably not needed

Babel probably works

https://www.npmjs.com/package/find-unused-exports

Assembling the UI

Photo by Anna Shvets from Pexels

https://www.pexels.com/@shvetsa
https://www.pexels.com/photo/brown-tabby-cat-with-slice-of-loaf-bread-on-head-4587955/

XML UI files or no?

XML-CSS-JS is like the trinity of HTML-CSS-JS

Alternative is to build your UI in code

XML UI files or no?

<object class="GtkListView" id="notesList">
 <property name="show-separators">True</property>
 <signal name="activate" handler="_onNotesListActivate"/>
</object>

vs.

this._notesList = new Gtk.ListView({ showSeparators: true });
this._notesList.connect("activate", this._onNotesListActivate.bind(this));

XML UI files

Tedious to write by hand

Glade UI Designer

GTK 3 only

GTK 4 alternative underway

https://glade.gnome.org/
https://blogs.gnome.org/xjuan/2021/02/28/cambalache/

Result

CSS

.large-icon {
 color: #888a85;
 -gtk-icon-shadow: #d3d7cf 1px 1px;
 padding-right: 8px;
}

CSS

Time to write code

Image CC0 licensed

https://www.pexels.com/photo/adorable-animal-animal-world-cat-209037/

API Documentation

gjs-docs.gnome.org

https://gjs-docs.gnome.org/

About the API

Every UI element is based on Gtk.Widget

Roughly equivalent to a HTML DOM element

Methods

Properties

Signals (events)

CSS element name and classes

Things that are not UI elements are based on GObject.Object

ES modules

import Gdk from "gi://Gtk";
import Gio from "gi://Gio";
import GObject from "gi://GObject";
import Gtk from "gi://Gtk";

import { NotesListItem } from "./item.js";

Async operations

GNOME platform has asynchronous, cancellable I/O

Experimental opt-in support for JS await

Gio._promisify(Gio.OutputStream.prototype, 'write_bytes_async', 'write_bytes_finish');

// ...

let bytesWritten = 0;
while (bytesWritten < bytes.length) {
 bytesWritten = await stream.write_bytes_async(bytes, priority, cancellable);
 bytes = bytes.slice(bytesWritten);
}

Popular runtime libraries

These may or may not work

Check if you actually need the dependency

Use ES module directly if it doesn't have other deps

Some modules ship a browser bundle, this might work

Else, build a UMD bundle with Browserify and vendor it

Build a UMD bundle with browserify

yarn add my-library
mkdir -p src/vendor
npx browserify -r my-library -s myLibrary -o src/vendor/my-library.js

import './vendor/my-library.js';
// myLibrary is now a global object

Top 5 most used NPM libraries

�. lodash

�. chalk

�. request

�. commander

�. react

https://gist.github.com/anvaka/8e8fa57c7ee1350e3491

Lodash

In some cases not necessary

Use lodash-es if you need lodash

import _ from './vendor/lodash-es/lodash.js';
_.defaults({ 'a': 1 }, { 'a': 3, 'b': 2 });

Chalk

No bundle, so make a Browserified one

Color support detection code is Node-only

Edit bundle, change stdout: false and stderr: false to true

import './vendor/chalk.js';
print(chalk.blue('Hello') + ' World' + chalk.red('!'));

Request

Deprecated

Use Soup instead

const request = require('request');
request('https://ptomato.name', function (error, response, body) {
 console.error('error:', error);
 console.log('statusCode:', response && response.statusCode);
 console.log('body:', body);
});

import Soup from 'gi://Soup';
const session = new Soup.Session();
const msg = new Soup.Message({ method: 'GET', uri: new Soup.URI('https://ptomato.name') });
session.queue_message(msg, (_, {statusCode, responseBody}) => {
 log(`statusCode: ${statusCode}`);
 log(`body: ${responseBody.data}`);
});

https://gjs-docs.gnome.org/soup24/

Commander

No bundle, so make a Browserified one

import System from 'system';
import './vendor/commander.js';
const { Command } = commander;

const options = new Command()
 .option('-p, --pizza-type <type>', 'flavour of pizza')
 .parse(System.programArgs, { from: 'user' })
 .opts(); // ^^^^^^^^^^^^

if (options.pizzaType) print(`pizza flavour: ${options.pizzaType}`);

React

Not applicable

P.S. Although it would be cool if React Native worked with GTK

Fast-forward to the written code

(Live demo, but in case that doesn't work out, screenshots follow)

Image CC0 licensed

https://github.com/ptomato/bloatpad
https://www.pexels.com/photo/black-and-brown-himalayan-cat-close-up-photography-162104/

Distributing your app

to users

Image by acebrand from Pixabay

https://pixabay.com/users/acebrand-129789/
https://pixabay.com/

How?

Flathub

Requirements

Luckily, the generated project skeleton meets all of these

Only need to fill in a few things

https://flathub.org/home
https://github.com/flathub/flathub/wiki/App-Requirements

AppStream meta info

This file is used to provide the

description that users see on

Flathub

And in their software updater

appplication

Description of file format

https://www.freedesktop.org/software/appstream/docs/chap-Metadata.html

AppStream meta info

Generator to get you started

Asks you a few questions

Asks for URLs of screenshots

Flathub guidelines

OARS rating

OARS Generator

https://www.freedesktop.org/software/appstream/metainfocreator
https://github.com/flathub/flathub/wiki/AppData-Guidelines
https://hughsie.github.io/oars/index.html
https://hughsie.github.io/oars/generate.html

Desktop file

Tells how to display your app in the desktop

Description of file format

List of categories

[Desktop Entry]
Name=Bloatpad
Comment=Unnecessary note-taking application
Exec=name.ptomato.Bloatpad
Icon=name.ptomato.Bloatpad
Terminal=false
Type=Application
Categories=Utility;GTK;
StartupNotify=true

https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#recognized-keys
https://specifications.freedesktop.org/menu-spec/latest/apa.html

Application icon

Tobias Bernard on Designing an Icon for your App

https://blogs.gnome.org/tbernard/2019/12/30/designing-an-icon-for-your-app/

Submit it to Flathub

Instructions here

https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app

Translate your UI

Gettext is built-in to the platform

Venerable framework for UI translations

Use a website like Transifex

Recruit volunteer translators

Or translate the UI yourself in whatever languages you speak

Conclusion

Some things might seem familiar to JS developers, others might not

We should reduce the friction for these developers

But not everything from the web or Node.js applies well to the desktop

Questions

Image by IRCat from Pixabay

https://pixabay.com/users/ircat-10981235/
https://pixabay.com/

Thanks

Andy Holmes, Evan Welsh, Sri Ramkrishna for discussions and their work on

improving the GJS developer experience

License

Presentation licensed under Creative Commons BY-NC-ND 4.0

Bloatpad code, permissive MIT license

