
1

Linux Graphics 101
Converting bits to Triangles

Rohan Garg
Linux App Summit 2020

2

Disclaimer

● I am not (yet) an experienced Graphics developer

− Take my words with a grain of salt

− Please correct me if I’m wrong

3

What is this talk about?
● This presentation is about

− Providing a overview of the Linux Open Source Graphics stack

● This presentation is not about

− Teaching you how to develop a GPU driver

− Teaching you how to use Graphics APIs (OpenGL/Vulkan/D3D)

− Explaining what GPUs are and how they work

4

The Linux Graphics Stack

5

The Big Picture

6

The Graphics API

7

The Graphics API: What are they?

● Entry points for Graphics Apps/Libs

● Abstract the GPU pipeline configuration/manipulation

● You might have the choice
− OpenGL/OpenGLES: Well established, well supported and widely used

− Vulkan: Modern API, this is the future, but not everyone uses/supports it yet

− Direct3D: Windows Graphics API (version 12 of the API resembles the Vulkan API)

8

The Graphics API: Shaders

● Part of the pipeline is programmable
− Separate Programming Language: GLSL or HLSL

− Programs are passed as part of the pipeline configuration...

− ... and compiled by drivers to generate hardware-specific bytecode

9

The Graphics API: OpenGL(ES) vs Vulkan

● Two philosophies:
− OpenGL tries to hide as much as possible the GPU internals

− Vulkan provides fine grained control

− Vulkan provides a way to record operations and replay them

− More work for the developer, less work for the CPU

● Vulkan applications are more verbose, but

− Vulkan verbosity can be leveraged by higher-level APIs

− Drivers are simpler

− Improved perfs on CPU-bound workloads

10

The Kernel/Userspace Driver Separation

● GPUs are complex beasts → drivers are complex too:
− We don’t want to put all the complexity kernel side
− Not all code needs to run in a privileged context
− Debugging in userspace is much easier
− Licensing issues (for closed source drivers)

11

Kernel Drivers

12

Kernel Drivers

● Kernel drivers deal with
− Memory
− Command Stream submission/scheduling
− Interrupts and Signaling

● Kernel drivers interfaces with open-source userspace drivers live in
Linus’ tree: drivers/gpu/drm/

● Kernel drivers interfacing with closed-source userspace drivers are
out-of-tree

13

Kernel Drivers: Memory Management
● Two Frameworks

− GEM: Graphics Execution Manager
− TTM: Translation Table Manager

● Some Terminologies
− Buffer Object - A region of memory to upload GPU Data (Textures, Vertexes, etc)
− ioctl - the most common way for applications to interface with device drivers.
− cmdstream - A set of commands compromising a full job on the GPU.

14

mesa/include/drm-uapi/panfrost_drm.h

#define DRM_PANFROST_WAIT_BO 0x01
#define DRM_PANFROST_CREATE_BO 0x02
#define DRM_PANFROST_MMAP_BO 0x03
#define DRM_PANFROST_GET_PARAM 0x04
#define DRM_PANFROST_GET_BO_OFFSET 0x05

…

Kernel Drivers: Memory Management
● GPU drivers using GEM

− Should provide an ioctl() to
allocate Buffer Objects (BOs)

− Releasing BOs is done through a
generic ioctl()

− Might provide a way to do cache
maintenance operations on a BO

− Should guarantee that BOs
referenced by a submitted
Command Stream are properly
mapped GPU-side

15

Kernel Drivers: Scheduling
● Submission != Immediate execution

− Several processes might be using the GPU in parallel

− The GPU might already be busy when the request comes in

● Submission == Queue the cmdstream

● Each driver has its own ioctl() for that

● Userspace driver knows inter-cmdstream dependencies

● Scheduler needs to know about those constraints too

● DRM provides a generic scheduling framework: drm_sched

16

Userspace/Kernel Driver Synchronization
● Userspace driver needs to know when the GPU is done executing a

cmdstream
● Hardware reports that through an interrupt

● Information has to be propagated to userspace

● Here come fences: objects allowing one to wait on job completion

● Exposed as syncobjs objects to userspace

● fences can also be placed on BOs

17

Userspace Drivers

18

Userspace Driver: Roles
● Exposing one or several Graphics API

− Maintaining the API specific state machine (if any)
− Managing off-screen rendering contexts (if any)
− Compiling shaders into hardware specific bytecode
− Creating, populating and submitting command streams

● Interacting with the Windowing System
− Managing on-screen rendering contexts
− Binding/unbinding render buffers
− Synchronizing on render operations

19

Mesa: Open Source Userspace Drivers
● 2 Graphics APIs 2 different approaches:
● GL:

− Mesa provides a frontend for GL APIs (libGL(ES))
− GL Drivers implement the DRI driver interface
− Modern drivers make use of the Gallium state tracker within mesa
− Drivers are shared libs loaded on demand

● Vulkan:
− Khronos has its own driver loader (Open Source)
− Mesa just provides Vulkan drivers
− No abstraction for Vulkan drivers, code sharing through libs

20

Mesa State Tracking
(Pipeline Configuration)

21

Mesa State Tracking: Pre-Gallium

22

Mesa State Tracking: Gallium

23

Mesa State Tracking: Vulkan

24

Mesa Shader Compilation
(Pipeline Manipulation)

25

Mesa: Shader Compilation
● Compilation is a crucial aspect
● Compilation usually follows the following steps

− Shader Programming Language -> Generic Intermediate Representation (IR)
− Optimization in the generic IR space
− Generic IR -> GPU specific IR
− Optimization in the GPU specific IR space
− Byte code generation

● Note that you can have several layers of generic IR

26

Mesa: Shader Compilation

27

Debugging Tips

28

Tips and Tricks

● GDB is your friend, get comfortable with it
○ _mesa_error() to trap Mesa errors
○ _mesa_foo entry points for glFoo functions
○ Turn on asserts with -Db_ndebug=false

● Set MESA_DEBUG for error messages to stdout
● Every driver has it’s own debugging variables

○ Check https://docs.mesa3d.org/envvars.html for complete list
● Piglit

○ https://gitlab.freedesktop.org/mesa/piglit/
○ Comprehensive way of understanding a particular feature or gl

call.

https://docs.mesa3d.org/envvars.html
https://gitlab.freedesktop.org/mesa/piglit/

29

Conclusion

30

Nice overview, but what’s next?

● The GPU topic is quite vast
● Start small

− Choose a driver

− Find a feature that’s missing or buggy

− Stick to it until you get it working

● Getting a grasp on GPU concepts/implementation takes time

● Don’t give up

31

Useful readings
● Understanding how GPUs work is fundamental:

− A trip through the Graphics Pipeline 2011
− How a GPU Works
− Search ”how GPUs work” on Google ;-)

● Khronos OpenGL Wiki
− OpenGL Objects
− Rendering Pipeline

● Mesa source tree is sometimes hard to follow, refer to the doc
● And the DRM kernel docs can be useful too

− Fences
● Open Source Graphics 101: Getting Started - Boris Brezillon, Collabora

https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www/lec_slides/lec19.pdf
https://www.khronos.org/opengl/wiki
https://www.khronos.org/opengl/wiki/OpenGL_Object
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://mesa-docs.readthedocs.io/en/latest/sourcetree.html
https://01.org/linuxgraphics/gfx-docs/drm/gpu/index.html
https://www.kernel.org/doc/html/latest/driver-api/sync_file.html
https://www.youtube.com/watch?v=HJoLVpPdJ70

32

Q & A
Thank you!

